Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000000000000000000000000	0000000000000	000000000	000000000000000	00

4. Normal Forms

Stéphane Bressan

January 27, 2015

Motivation 2NF 3NF EKNF BCNF Conclusion

This lecture is based on material by Professor Ling Tok Wang.

CS 4221: Database Design

The Relational Model

Ling Tek Wang National University of Singapore

OPHER The Relational Hold

https://www.comp.nus.edu.sg/

~lingtw/cs4221/rm.pdf

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000000000000000000000000	0000000000000	000000000	000000000000000000000000000000000000000	00

Content

- Introduction
- readings

2NF

Second Normal Form

- 3NF
- Third Normal Form

EKNF

- Elementary Key Normal Form
- **BCNF** 5
 - Boyce-Codd Normal Form

Conclusion

Relationships between Normal Forms

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
•	000000000000000000000000000000000000	00000000000000	000000000	000000000000000000000000000000000000	00
readings					

Readings

- Kent, William, "A Simple Guide to Five Normal Forms in Relational Database Theory", Communications of the ACM 26 (2), Feb. 1983, pp. 120-125.
- Zaniolo, Carlo, "A New Normal Form for the Design of Relational Database Schemata." ACM Transactions on Database Systems 7(3), September 1982.
- Maier, David, "The Theory of Relational Databases", http: //web.cecs.pdx.edu/~maier/TheoryBook/TRD.html, (1983).

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	●00000000000000	000000000000000000000000000000000000000	000000000	000000000000000	00
Second Norma	l Form				

Second Normal Form

=							
U	TAKE						
	STUDENT#	DEPARTMENT	FACULTY	COURSE#	SNAME	CDESC	MARK
Π	95001	CS	SoC	CS1101	Tan CK	Programming	75
Π	95023	CEG	Eng	CS1101	Lee SL	Programming	58
Π	95023	CEG	Eng	CS2103	Tan CK	D.S. and Alg.	64

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000	0000000000000	000000000	000000000000000	00
Second Normal	l Form				
Exar	nple				

```
\begin{split} \mathsf{TAKE} &= \{\mathsf{STUDENT\#}, \mathsf{DEPARTMENT}, \mathsf{FACULTY}, \mathsf{COURSE\#}, \\ \mathsf{SNAME}, \mathsf{CDESC}, \mathsf{MARK} \}. \\ &\Sigma &= \{\{\mathsf{STUDENT\#}\} \rightarrow \{\mathsf{SNAME}, \mathsf{DEPARTMENT}\}, \\ \{\mathsf{DEPARTMENT}\} \rightarrow \{\mathsf{FACULTY}\}, \\ \{\mathsf{COURSE\#}\} \rightarrow \{\mathsf{CDESC}\}, \\ \{\mathsf{STUDENT\#}, \mathsf{COURSE\#}\} \rightarrow \{\mathsf{MARK}\} \} \\ &\mathsf{The candidate key is} \{\mathsf{STUDENT\#}, \mathsf{COURSE\#}\} \end{split}
```

Problem

SNAME, DEPARTMENT, FACULTY, CDESC and MARK do not fully depend on the key! This creates anomalies.

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	0000000000000	000000000000	00000000	00000000000000	00
Second Normal F	orm				

Reminder

We say that Y is fully dependent on X if and only if there exists a non-trivial functional dependency $X \to Y$ such that no proper subset X' of X is such such that $X' \to Y \in \Sigma^+$.

SNAME is not fully dependent on the key $\{STUDENT\#, COURSE\#\}.$

 $\{\mathsf{STUDENT}\#\} \to \{\mathsf{SNAME}\}$

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000	000000000000	000000000	00000000000000000	00
Second Normal F	orm				

First Idea

Let us make sure that every attribute fully depends on the primary key.

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000000000000000000000000	000000000000	00000000	000000000000000000000000000000000000000	00
Second Normal F	orm				

But prime attributes do not fully depend on the key (if there is only one)!

Example

```
STUDENT# is not fully dependent on the key {STUDENT#, COURSE#}.
```

$\{\mathsf{STUDENT}\#, \mathsf{COURSE}\#\} \rightarrow \{\mathsf{STUDENT}\#\}$

is trivial.

First Idea (refined)

Let us make sure that every non-prime attribute fully depends on the primary key.

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000000000000000000000000	000000000000	000000000	00000000000000	00
Second Normal F	orm				

But there could be more than one candidate key!

Example

$$\begin{split} &R = \{A, B, C, D, E\}.\\ &\Sigma = \{\{A, B\} \rightarrow \{C, D\}, \{C, D\} \rightarrow \{A, B\}, \{C\} \rightarrow \{E\}\}\\ &\text{The candidate keys are } \{A, B\} \text{ and } \{C, D\}.\\ &E \text{ fully depends on } \{A, B\}.\\ &\text{Yet E does not fully depend on } \{C, D\}. \end{split}$$

First Idea (further refined)

Let us make sure that every non-prime attribute fully depends on each candidate key.

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	00000000000000	000000000000	000000000	0000000000000000000	00
Second Normal F	Form				

"A nonkey field must provide a fact about the key, the whole key [...]", W. Kent in "A Simple Guide to Five Normal Forms in Relational Database Theory", Communication of the ACM, Volume 26, Number 2 (1983).

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	00000000000000	000000000000	000000000	00000000000000	00
Second Normal F	orm				

Definition

A relation R with a set of functional dependencies Σ is in Second Normal Form, or 2NF for short, if and and only if every non-prime attribute is fully dependent on each candidate key.

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000	000000000000	00000000	000000000000000000000000000000000000000	00
Second Normal F	orm				

Theorem

A relation R with a set of functional dependencies Σ is in Second Normal Form if and only if for every functional dependency $X \rightarrow \{A\} \in \Sigma^+$:

- $X \to \{A\}$ is trivial or
- X is not a proper subset of a candidate key or
- A is a prime attribute.

It is sufficient to look at Σ .

This situation where X is a proper subset of a candidate key is forbidden:

X cannot be proper subset of a candidate key. A must be fully dependent on each candidate key.

For all candidate keys, we must have one of the following:

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000000000000000000000000	0000000000000	000000000	000000000000000	00
Second Normal	Form				

STUDENT			
STUDENT#	DEPARTMENT	FACULTY	SNAME
95001	CS	SoC	Tan CK
95023	CEG	Eng	Lee SL

COURSE	
COURSE#	CDESC
CS1101	Programming
CS2103	D.S. and Alg.

TAKE		
STUDENT#	COURSE#	MARK
95001	CS1101	75
95023	CS1101	58
95023	CS2103	64

Verify that all relations are in 2NF. What are the (projected) functional dependencies? What are the candidate keys? Is it prone to anomalies?

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000000000000000000000000	000000000000	00000000	00000000000000	00
Second Normal F	orm				

Example

A supplier with supplier number (S#) and name (SNAME) supplies a part with part number (P#) and name (PNAME) with a price (PRICE).

 $\mathsf{SP} = \{\mathsf{S}\#,\mathsf{SNAME},\mathsf{P}\#,\mathsf{PNAME},\mathsf{PRICE}\}$

 $\Sigma = \{\{S\#\} \rightarrow \{SNAME\},$

 $\{\mathsf{P}\#\} \to \{\mathsf{PNAME}\},$

 $\{S\#,P\#\} \to \{\mathsf{PRICE}\}\}$

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	00000000000000000	000000000000	00000000	00000000000000	00
Second Normal F	orm				

Question

Is SP with Σ in 2NF?

The only candidate key is $\{S\#, P\#\}$. How to prove it?

Compute all the attribute set closures or observe that PRICE cannot be prime as it appears in the right-hand-side of a functional dependency and does not appear in the left-hand-side of a functional dependency.

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	00000000000000	000000000000	00000000	000000000000000000000000000000000000000	00
Second Normal F	orm				

Question

Is SP with Σ in 2NF?

One way: SNAME is not fully dependent on the candidate key.

 $\{S\#\} \to \{SNAME\}$

There is redudant information about SNAME and about PNAME in SP.

Or another: {S#} \rightarrow {SNAME} is neither trivial, nor is SNAME a prime attribute, and {S#} is a proper subset of a candidate key ({S#} \subset {S#, P#} and {S#} \neq {S#, P#}).

Answer

SP with Σ in not in 2NF.

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000	•000000000000	000000000	000000000000000	00
Third Normal Fo	orm				

Third Normal Form

STUDENT			
STUDENT#	DEPARTMENT	FACULTY	SNAME
95001	CS	SoC	Tan CK
95011	CS	SoC	Wee LK
95023	CEG	Eng	Lee SL

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000000000000000000000000	000000000000	000000000	0000000000000000	00
Third Normal Fo	orm				

Example

$$\begin{split} R &= \{ \texttt{STUDENT\#}, \texttt{FACULTY}, \texttt{COURSE\#}, \texttt{SNAME} \}.\\ \Sigma &= \{ \{ \texttt{STUDENT\#} \} \rightarrow \{ \texttt{SNAME}, \texttt{DEPARTMENT} \},\\ \{ \texttt{DEPARTMENT} \} \rightarrow \{ \texttt{FACULTY} \} \}\\ \texttt{The candidate key is } \{ \texttt{STUDENT\#} \}.\\ \texttt{The relation is in 2NF}. \end{split}$$

Problem

FACULTY is transitively dependent on the key! This creates anomalies.

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000000000000000000000000	000000000000	000000000	000000000000000000	00
Third Normal Fo	rm				

Reminder

We say that a non-prime attribute A is transitively dependent on a candidate key if and only if there exists a set of attributes S such that S is not a superkey and $S \rightarrow \{A\}$ holds and is a non-trivial functional dependency.

FACULTY is transitively dependent on the key. $STUDENT# \rightarrow DEPARTMENT \rightarrow FACULTY$

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000	000000000000	000000000	000000000000000000	00
Third Normal Fo	rm				

Second Idea

Let us make sure that every non-prime attribute is not transitively dependent on any candidate key.

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000	0000000000000	000000000	0000000000000000	00
Third Normal Fo	orm				

Second Idea

"A nonkey field must provide a fact about the key, the whole key, and nothing but the key. [So help me Codd.]", W. Kent in "A Simple Guide to Five Normal Forms in Relational Database Theory", Communication of the ACM, Volume 26, Number 2 (1983).

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000	000000000000	000000000	0000000000000000000	00
Third Normal Fo	rm				

Definition

A relation R with a set of functional dependencies Σ is in (Codd) Third Normal Form, or 3NF for short, if and and only if it is in Second Normal Form and no non-prime attribute is transitively dependent on some candidate key.

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000	000000000000	000000000	000000000000000	00
Third Normal Fo	rm				

The test requires to check every non-prime attribute with every candidate key.

Theorem

If a non-prime attribute is not transitively dependent on a given candidate key, then it fully depends on a candidate key.

Theorem

A relation R with a set of functional dependencies Σ is in Third Normal Form if and and only if it is in 2NF and every non-prime attribute is not transitively dependent on any given candidate key.

The test now only requires to check every non-prime attribute with one candidate key.

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	00000000000000	0000000000000	00000000	000000000000000000000000000000000000000	00
Third Normal For	rm				

The test requires to check 2NF.

Theorem

If a non-prime attribute is not transitively dependent on any given candidate key, then it fully depends on a candidate key.

Theorem

A relation R with a set of functional dependencies Σ is in Third Normal Form if and and only if every non-prime attribute is not transitively dependent on any given candidate key.

The test now does not requires to check 2NF.

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000	00000000000000	000000000	00000000000000	00
Third Normal Fo	rm				

Theorem

A relation R with a set of functional dependencies Σ is in Third Normal Form, or 3NF for short, if and only if for every functional dependency $X \to \{A\} \in \Sigma^+$:

- $X \to \{A\}$ is trivial or
- A is a prime attribute or
- X is a superkey.

It is sufficient to look at Σ .

For some candidate key, we must have one of the following:

X is a superset of the candidate key (X is a superkey).

X is the candidate key (X is a superkey).

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000	00000000000000	000000000	000000000000000	00
Third Normal Fo	rm				

STUDENT		
STUDENT#	DEPARTMENT	SNAME
95001	CS	Tan CK
95011	CS	Wee LK
95023	CEG	Lee SL

DEPARTMENT	
DEPARTMENT	FACULTY
CS	SoC
CS	SoC
CEG	Eng

Verify that all relations are in 3NF. What are the (projected) functional dependencies? What are the candidate keys? Is it prone to anomalies?

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000000000000000000000000	00000000000000	000000000	0000000000000000000	00
Third Normal Fo	rm				

Example

A supplier with supplier number (S#) and name (SNAME) supplies a part with part number (P#) and name (PNAME) with a price (PRICE).

 $\mathsf{SP} = \{\mathsf{S}\#,\mathsf{SNAME},\mathsf{P}\#,\mathsf{PNAME},\mathsf{PRICE}\}$

 $\Sigma = \{\{S\#\} \rightarrow \{SNAME\},$

 $\{\mathsf{P}\#\} \to \{\mathsf{PNAME}\},$

 $\{S\#,P\#\} \to \{\mathsf{PRICE}\}\}$

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	0000000000000000000	00000000000	000000000	0000000000000000000	00
Third Normal Fo	rm				

Question

Is SP with Σ in 3NF?

The only candidate key is $\{S\#, P\#\}$.

One way: SNAME is transitively dependent on the candidate key.

 $\{S\#, \mathsf{P}\#\} \rightarrow \{S\#\} \ \{S\#\} \rightarrow \{\mathsf{SNAME}\}$

Or another: $\{S\#\} \rightarrow \{SNAME\}$ is neither trivial, nor is SNAME a prime attribute, nor is $\{S\#\}$ a superkey.

Answer

SP with Σ in not in 3NF.

Elementary Key Normal Form

Elementary Key Normal Form

STAFF		
DEPARTMENT	HEAD	PROFESSOR
Tan Kian Lee	CS	Lee Mong Li
Zhu Chengbo	Math	Frank Stefan
Tan Kian Lee	CS	Frank Stefan
Zhu Chengbo	Math	Bao Weizhu

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	00000000000000000	0000000000000	00000000	000000000000000000000000000000000000000	00
Elementary Key Normal Form					

Example

$$\begin{split} & STAFF = \{\text{DEPARTMENT}, \text{HEAD}, \text{PROFESSOR}\}.\\ & \Sigma = \{\{\text{DEPARTMENT}\} \rightarrow \{\text{HEAD}\}, \{\text{HEAD}\} \rightarrow \{\text{DEPARTMENT}\}\}\\ & \text{The candidate keys are } \{\text{PROFESSOR}, \text{HEAD}\} \text{ and } \{\text{PROFESSOR}, \text{DEPARTMENT}\}.\\ & \text{The relation is in 3NF. Every attribute is prime}\} \end{split}$$

Problem

 $\{\mathsf{HEAD}\} \rightarrow \{\mathsf{DEPARTMENT}\} \text{ and } \{\mathsf{DEPARTMENT}\} \rightarrow \{\mathsf{HEAD}\}$ cannot be enforced in most SQL dialects. This leads to anomalies.

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	0000000000000000000	000000000000	000000000	000000000000000000	00
Elementary Key	Normal Form				

Definition

An elementary functional dependency is a full dependency.

Definition

A candidate key K is an elementary candidate key if and only if there exists an attribute A such that $K \to \{A\}$ is an elementary functional dependency.

Definition

An elementary prime attribute is an attribute of some elementary candidate key.

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	0000000000000000	0000000000000	000000000	0000000000000000	00
Elementary Key	Normal Form				

The two candidate keys, {PROFESSOR, HEAD} and {PROFESSOR, DEPARTMENT}, are not elementary: there is no attribute that fully depends on them.

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	0000000000000000000	000000000000	000000000	000000000000000000	00
Elementary Key Normal Form					

Third Idea

Let us make sure that some candidate keys and all transitively dependent prime attributes are elementary.

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000	0000000000000	000000000	000000000000000000	00
Elementary Key Normal Form					

Definition

A relation R with a set of functional dependencies Σ is in Elementary Key Normal Form, or EKNF for short, if and only if for every functional dependency $X \to \{A\} \in \Sigma^+$:

- $X \to \{A\}$ is not elementary or
- A is an elementary prime attribute or
- X is an elementary candidate key.

It is sufficient to look at Σ .

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000	0000000000000	0000000000	000000000000000000	00
Elementary Key Normal Form					

Theorem

A relation R with a set of functional dependencies Σ is in Elementary Key Normal Form, or EKNF for short, if and only if for every functional dependency $X \to \{A\} \in \Sigma^+$:

- $X \to \{A\}$ is trivial or
- A is an elementary prime attribute or
- X is a superkey.

It is sufficient to look at Σ .

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000000000000000000000000	0000000000000	000000000	000000000000000000000000000000000000000	00
Elementary Key	Normal Form				

Example

$$\begin{split} & \textit{STAFF} = \{\textit{DEPARTMENT}, \textit{HEAD}, \textit{PROFESSOR}\}.\\ & \Sigma = \{\{\textit{DEPARTMENT}\} \rightarrow \{\textit{HEAD}\}, \{\textit{HEAD}\} \rightarrow \{\textit{DEPARTMENT}\}\}\\ & \text{The candidate keys are } \{\textit{PROFESSOR}, \textit{HEAD}\} \text{ and } \{\textit{PROFESSOR}, \textit{DEPARTMENT}\}.\\ & \text{No candidate key is elementary.} \end{split}$$

The relation is not in EKNF.

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000	000000000000000000000000000000000000000	00000000	000000000000000	00
Elementary Key	Normal Form				

STAFF	
DEPARTMENT	PROFESSOR
CS	Lee Mong Li
Math	Frank Stefan
CS	Frank Stefan
Math	Bao Weizhu
••••	

MANAGEMENT	
DEPARTMENT	HEAD
Tan Kian Lee	CS
Zhu Chengbo	Math

Verify that all relations are in EKNF. What are the (projected) functional dependencies? What are the candidate keys? Is it prone to anomalies?
 Motivation
 2NF
 3NF
 EKNF

 0
 000000000000
 00000000000
 0000

KNF

Co 00000 00

Boyce-Codd Normal Form

Boyce-Codd Normal Form

STAFF		
DEPARTMENT	HEAD	PROFESSOR
Tan Kian Lee	CS	Lee Mong Li
Zhu Chengbo	Math	Frank Stefan
Tan Kian Lee	CS	Frank Stefan
Zhu Chengbo	Math	Bao Weizhu
•••		

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000	0000000000000	000000000	000000000000000000000000000000000000000	00
Boyce-Codd Nor	mal Form				

Example

$$\begin{split} & \textit{STAFF} = \{\textit{DEPARTMENT}, \textit{HEAD}, \textit{PROFESSOR}\}.\\ & \Sigma = \{\{\textit{DEPARTMENT}\} \rightarrow \{\textit{HEAD}\}, \{\textit{HEAD}\} \rightarrow \{\textit{DEPARTMENT}\}\}\\ & \text{The candidate keys are } \{\textit{PROFESSOR}, \textit{HEAD}\} \text{ and } \{\textit{PROFESSOR}, \textit{DEPARTMENT}\}.\\ & \text{The relation is in } 3NF. Every attribute is prime} \end{split}$$

Problem

 $\{\mathsf{HEAD}\} \rightarrow \{\mathsf{DEPARTMENT}\} \text{ and } \{\mathsf{DEPARTMENT}\} \rightarrow \{\mathsf{HEAD}\}$ cannot be enforced in most SQL dialects. This leads to anomalies.

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000000000000000000000000	000000000000	000000000	000000000000000000	00
Boyce-Codd Nor	mal Form				

Fourth Idea

Why do we focus on prime and elementary attributes? If something non-trivially depends on something else, then it should be on

"a key, a whole key, and nothing but a key"

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000	0000000000000	000000000	000000000000000000000000000000000000000	00
Boyce-Codd Nor	mal Form				

Definition

A relation R with a set of functional dependencies Σ is in Boyce-Codd Normal Form, or BCNF for short, if and only if for every attribute set $S \subset R$, if any attribute of R not in S is functionally dependent on S, then all attributes in R are functionally dependent on S.

Theorem

A relation R with a set of functional dependencies Σ is in BCNF if and only if no attribute is transitively dependent on any key. [David Maier]

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	00000000000000000	000000000000	000000000	000000000000000000000000000000000000000	00
Boyce-Codd Norr	nal Form				

Theorem

A relation R with a set of functional dependencies Σ is in BCNF if and only if for every functional dependency $X \to \{A\} \in \Sigma^+$:

- $X \to \{A\}$ is trivial or
- X is a superkey.

It is sufficient to look at Σ .

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000000000000000000000	000000000000000	000000000	000000000000000000000000000000000000	
Boyce-Codd Nor	rmal Form				

STAFF	
DEPARTMENT	PROFESSOR
CS	Lee Mong Li
Math	Frank Stefan
CS	Frank Stefan
Math	Bao Weizhu
•••	

MANAGEMENT		
DEPARTMENT	HEAD	
Tan Kian Lee	CS	
Zhu Chengbo	Math	

Verify that all relations are in BCNF. What are the (projected) functional dependencies? What are the candidate keys? Is it prone to anomalies?

The prototypical example of a relation in 3NF (and EKNF) and not in BCNF is:

R(A, B, C)

with

 $\{A,B\} \to \{C\}$

and

 $\{C\} \rightarrow \{B\}$

The candidate keys are $\{A, B\}$ and $\{A, C\}$. The only elementary candidate keys is $\{A, B\}$ (Why isn't $\{A, C\}$ elementary?). $\{C\} \rightarrow \{B\}$ is non trivial, $\{C\}$ is not a candidate key but *B* is an elementary prime attribute.

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000	0000000000000000	000000000	000000000000000	00
Boyce-Codd No	ormal Form				

DIRECTORY				
PROFESSOR	UNIVERSITY	TELEPHONE		
Ling Tok wang	NUS	(65) 6516-2734		
Lee Mong Li	NUS	(65) 6516 2905		
Gillian Dobbie	U. Auckland	(64 9) 373-7599 83949		
Lee Mong Li	U. Auckland	(64 9) 373-7599 83949		
•••				

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000000000000000000000000	0000000000000	000000000	000000000000000	00
Boyce-Codd N	lormal Form				
Exa	mnle				

 $\label{eq:stars} \begin{array}{l} \mathcal{R} = \{ \mathsf{PROFESSOR}, \mathsf{UNIVERSITY}, \mathsf{TELEPHONE} \}. \\ \Sigma = \{ \{ \mathsf{PROFESSOR}, \mathsf{UNIVERSITY} \} \rightarrow \{ \mathsf{TELEPHONE} \}, \\ \{ \mathsf{TELEPHONE} \} \rightarrow \{ \mathsf{UNIVERSITY} \} \} \\ \text{The candidate keys are } \{ \mathsf{PROFESSOR}, \mathsf{UNIVERSITY} \} \text{ and } \\ \{ \mathsf{PROFESSOR}, \mathsf{TELEPHONE} \}. \\ \text{The relation is in EKNF but not in BCNF}. \end{array}$

Problem

 $\{\mathsf{TELEPHONE}\} \rightarrow \{\mathsf{UNIVERSITY}\}$ cannot be enforced in most SQL dialects).

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000	0000000000000	000000000	0000000000000000	00
Boyce-Codd N	lormal Form				

DIRECTORY				
PROFESSOR	UNIVERSITY	TELEPHONE		
Ling Tok wang	NUS	(65) 6516-2734		
Lee Mong Li	NUS	(65) 6516 2905		
Gillian Dobbie	U. Auckland	(64 9) 373-7599 83949		
Lee Mong Li	U. Auckland	(64 9) 373-7599 83949		

SUBDIRECTORY			
UNIVERSITY	TELEPHONE		
NUS	(65) 6516-2734		
NUS	(65) 6516 2905		
U. Auckland	(64 9) 373-7599 83949		

Verify that all relations are in EKNF but still not in BCNF. What are the (projected) functional dependencies? What are the candidate keys? Is it prone to anomalies?

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000	0000000000000	000000000	0000000000000000	00
Boyce-Codd Nor	mal Form				

Example

$$\begin{split} & \text{DIRECTORY} = \{\text{PROFESSOR, UNIVERSITY, TELEPHONE}\}.\\ & \Sigma_1 = \{\{\text{PROFESSOR, UNIVERSITY}\} \rightarrow \{\text{TELEPHONE}\},\\ & \{\text{TELEPHONE}\} \rightarrow \{\text{UNIVERSITY}\}\}\\ & \text{The candidate keys are } \{\text{PROFESSOR, UNIVERSITY}\} \text{ and }\\ & \{\text{PROFESSOR, TELEPHONE}\}.\\ & \text{SUBDIRECTORY} = \{\text{UNIVERSITY, TELEPHONE}\}.\\ & \Sigma_2 = \{\{\text{TELEPHONE}\} \rightarrow \{\text{UNIVERSITY}\}\}\\ & \text{The candidate keys are } \{\text{PROFESSOR, UNIVERSITY}\} \text{ and }\\ & \{\text{PROFESSOR, TELEPHONE}\}. \end{split}$$

In addition, one needs a referential constraint from {DIRECTORY.UNIVERSITY, DIRECTORY.TELEPHONE} to {SUBDIRECTORY.UNIVERSITY, SUBDIRECTORY.TELEPHONE}

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000000000000000000000000	000000000000	000000000	000000000000000000000000000000000000000	00
Boyce-Codd Norr	mal Form				

One possible way is to declare a primary key which is a superkey.

```
CREATE TABLE DIRECTORY
UNIVERSITY ...,
TELEPHONE ... UNIQUE NOT NULL,
PRIMARY KEY (UNIVERSITY, TELEPHONE))
```

And to declare the foreign key.

DIRECTORY(UNIVERSITY, TELEPHONE) REFERENCES SUBDIRECTORY(UNIVERSITY, TELEPHONE)

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000000000000000000000000	0000000000000	000000000	000000000000000000000000000000000000000	00
Boyce-Codd No	ormal Form				

DIRECTORY	
PROFESSOR	TELEPHONE
Ling Tok wang	(65) 6516-2734
Lee Mong Li	(65) 6516 2905
Gillian Dobbie	(64 9) 373-7599 83949
Lee Mong Li	(64 9) 373-7599 83949

SUBDIRECTORY				
UNIVERSITY	TELEPHONE			
NUS	(65) 6516-2734			
NUS	(65) 6516 2905			
U. Auckland	(64 9) 373-7599 83949			

Verify that all relations are in BCNF. What are the (projected) functional dependencies? What are the candidate keys? Is it prone to anomalies?

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000000000000000000000000	0000000000000	000000000	00000000000000000	00
Boyce-Codd Nor	rmal Form				

Example

$$\begin{split} & \mathsf{DIRECTORY} = \{\mathsf{PROFESSOR}, \mathsf{TELEPHONE}\}.\\ & \Sigma_1 = \emptyset\\ & \mathsf{The \ candidate \ key \ is \ } \{\mathsf{PROFESSOR}, \mathsf{TELEPHONE}\}.\\ & \mathsf{SUBDIRECTORY} = \{\mathsf{UNIVERSITY}, \mathsf{TELEPHONE}\}.\\ & \Sigma_2 = \{\{\mathsf{TELEPHONE}\} \rightarrow \{\mathsf{UNIVERSITY}\}\}\\ & \mathsf{The \ candidate \ key \ is \ } \{\mathsf{TELEPHONE}\}. \end{split}$$

But we have lost one functional dependency. {PROFESSOR, UNIVERSITY} \rightarrow {TELEPHONE}

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000000000000000000000000000	000000000000	000000000	00000000000000	00
Boyce-Codd Nor	mal Form				

In some cases, there is no BCNF lossless dependency preserving decomposition.

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	000000000000000	000000000000	000000000	000000000000000000000000000000000000000	•0
Relationships bet	ween Normal Forms				

Theorem

$\mathit{1NF} \subset \mathit{2NF} \subset \mathit{3NF} \subset \mathit{EKNF} \subset \mathit{BCNF}$

Theorem

$1NF \neq 2NF \neq 3NF \neq EKNF \neq BCNF$

Motivation	2NF	3NF	EKNF	BCNF	Conclusion
0	0000000000000000000	000000000000	000000000	000000000000000000	00
Relationships bet	ween Normal Forms				

We have not discussed inter-relational dependencies. See https://www.comp.nus.edu.sg/~lingtw/ltk.pdf or read T.-W. Ling, F.W. Tompa, and T. Kameda, "An Improved Third Normal Form for Relational Databases", ACM Transactions on Database Systems, 6(2), June 1981, 329-346.